Personal Information
More >>Associate Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Associate Professor
Profile
本人博士毕业于新加坡国立大学机械学院,并联培于剑桥大学化工学院,研究方向主要侧重于理论分析和数值计算,具体包括但不限于以下几个方面:
1,多相流,颗粒群平衡建模
2,计算流体力学,高性能计算
3,数字孪生
4,人工智能算法:卷积/图神经网络,贝叶斯推理,梯度优化算法
本人的研究手段以理论分析和数值计算为主,熟练掌握Fortran、C/C++、MatLab、Python等编程语言,开发了多款开源流体力学代码:PBM-MPM, KIVA-CHEMKIN-MPM等。此外,本人协同剑桥大学CoMo Group开发了全新的发动机模拟软件Kinetics & SRM Suite及数据处理软件MoDS。该软件已被多国科研机构和公司使用,包括剑桥大学、伯明翰大学、南洋理工大学、卡特彼勒公司、福特汽车公司等。在过去5年间本人共发表论文30余篇,覆盖了计算机、流体力学、应用能源等多个著名国际期刊。此外本人还担任了两家国际期刊的编委:International Journal on Energy and Power Engineering, American Journal of Mechanics and Applications。
发表论文(部分):
[1] S. Wu, E. K. Y. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang, M. Kraft, A moment projection method for population balance dynamics with a shrinkage term. J. Comput. Phys. 330 (2017) 960-980.
[2] S. Wu, E. K. Y. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang, M. Kraft, Extension of moment projection method to the fragmentation process. J. Comput. Phys. 335 (2017) 516-534.
[3] S. Wu, C. Lindberg, J. Akroyd, W. Yang, M. Kraft, Bivariate extension of the moment projection method for the particle population balance dynamics. Comput. Chem. Eng. 124 (2019) 206-227.
[4] X. Han, M. Jia, Y. Chang, Y. Li, S. Wu. Directed message passing neural network (D-MPNN) with graph edge attention (GEA) for property prediction of biofuel-relevant species. Energ. AI, 10 (2022) 100201.
[5] S. Wu, S. Yang, K. L. Tay, W. Yang, M. Jia. A hybrid sectional moment projection method for discrete population balance dynamics involving inception, growth, coagulation and fragmentation. Chem. Eng. Sci. 249 (2022) 117333.
[6] S. Yang, Y. Wei, J. Hu, H. Wang, S. Wu*. Three-dimensional MP-PIC simulation of the steam gasification of biomass in the spouted bed gasifier. Energy Convers. Manag. 210 (2020) 112689.
[7] S. Wu, W. Yang, H. Xu, Y. Jiang, Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model. Appl. Energy. 253 (2019) 113609.
[8] S. Wu, D. Zhou, W. Yang, Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations. Appl. Energy. 254 (2019) 113661.
[9] S. Wu, W. Yang, Comparisons of methods for reconstructing particle size distribution from its moments. Fuel. 252 (2019) 325-338.
[10] S. Wu, C. Song, F. Bin, G. Lv, J. Song, C. Gong, La1− xCexMn1− yCoyO3 perovskite oxides: Preparation, physico-chemical properties and catalytic activity for the reduction of diesel soot. Mater. Chem. Phys. 148 (2014) 181-189.
[11] S. Wu, J. Akroyd, S. Mosbach, W. Yang, M. Kraft, A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines. Appl. Energy 258 (2020) 114083.
[12] S Wu, J Akroyd, S Mosbach, G Brownbridge, O Parry, V Page, W Yang, M. Kraft*. Efficient simulation and auto-calibration of soot particle processes in Diesel engines. Appl. Energy. 262 (2020) 114484.
[13] S. Wu, K. L. Tay, W. Yu, Q. Lin, H. Li, F. Zhao*, W. Yang*. Development of a highly compact and robust chemical reaction mechanism for the oxidation of tetrahydrofurans under engine relevant conditions. Fuel 276 (2020) 118034.
[14] K. L. Tay, W. Yang*, F. Zhao, Q. Lin, S. Wu, Development of a highly compact and robust chemical reaction mechanism for unsaturated furans oxidation in internal combustion engines via multi-objective genetic algorithm and generalized polynomial chaos. Energy Fuels 34 (2020) 936-948.
[15] F. Bin, C. Song*, G. Lv, X. Li, X. Cao, J. Song, S. Wu, Characterization of the NO-soot combustion process over La0.8Ce0.2Mn0.7Bi0.3O3 catalyst. Proc. Combust. Inst. 35 (2015) 2241-2248.
[16] F. Bin, C. Song*, G. Lv, J. Song, S. Wu, X. Li. Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts. Appl. Catal. B Environ. 150 (2014) 532-543.
[17] J. Li, Y. Liang, W. Yang, S. Wu*. A comparative study on the combustion process and emissions formation of a CI engine fueled with isomers n-octanol and di-n-butylether. Fuel 332 (2023) 126161.
[18] Z. Li, H. Xu, W. Yang, S. Wu. Numerical study on the effective utilization of high sulfur petroleum coke for syngas production via chemical looping gasification. Energy 235 (2021) 121395
[19] Z. Zhang, C. Zhang, H. Liu, F. Bin, X. Wei, R. Kang, S. Wu*, W. Yang, H. Xu, Self-sustained catalytic combustion of CO enhanced by micro fluidized bed: stability operation, fluidization state and CFD simulation. Front Environ. Sci. Eng. 17 (2023) 109.
[20] J. Li, Y. Liang, S. Wang, S. Wu, W. Yang, R. Liu, Blending n-octanol with biodiesel for more efficient and cleaner combustion in diesel engines: A modeling study. J. Clean, 403 (2023) 136877.
[21] X. Dong, H. Duan, M. Jia, S. Wu*, Y. Chang, Development of a practical soot model for diesel surrogate fuels and oxygenated fuels with specific soot precursor tracking and uniform model structure. Fuel 340 (2023) 127531.
[22] Z. Zhang, X. Han, M. Wang, Z. Wu, X. Sun, S. Wu*, A hybrid sectional moment projection method for modeling soot particle dynamics in laminar premixed flames. Fuel 331 (2023) 125731.
[23] Z. Zhang, M. Wang, Z. Wu, X. Chen, H. Li, S. Wu*, A highly robust numerical approach for handling the bi-variate soot population balance models in internal combustion engines. Int. J. Green Energy (2022) 1-15.
[24] S. Wu, KL Tay, J Li, W Yang, S Yang, Development of a compact and robust kinetic mechanism for furan group biofuels combustion in internal combustion engines. Fuel 298 (2021) 120824.
[25] H. Li, J. Lei, M. Jia, H. Xu, S. Wu*, High dimensional model representation approach for prediction and optimization of the supercritical water gasification system coupled with photothermal energy storage. Processes 11 (2023) 2313.
[26] J. Huang, H. Liu, C. Zhang, F. Bin, X. Wei, R. Kang, S. Wu*, Study on the structural evolution and heat transfer performance of Cu supported on regular morphology CeO2 in CO catalytic combustion and chemical looping combustion. J. Clean, 417 (2023) 138038.
Educational Experience
Work Experience
Research Focus
1,多相流,颗粒群平衡建模
2,计算流体力学
3,工业互联网技术:云计算,数字孪生建模,检测预警,智能预测及控制
4,人工智能算法:卷积/图神经网络,贝叶斯推理,梯度优化算法