大连理工大学  登录  English 
肖义
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 化工学院

学科: 应用化学. 精细化工. 生物化工

办公地点: 西校区E-204

联系方式: xiaoyi@dlut.edu.cn 0411-84986251

电子邮箱: xiaoyi@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Ratiometric imaging of mitochondrial pH in living cells with a colorimetric fluorescent probe based on fluorescein derivative

点击次数:

论文类型: 期刊论文

发表时间: 2017-12-01

发表刊物: SENSORS AND ACTUATORS B-CHEMICAL

收录刊物: SCIE、EI

卷号: 253

页面范围: 58-68

ISSN号: 0925-4005

关键字: Fluorescent probe; Fluorescein; Mitochondrion-targetable; pH monitoring; Ratiometric imaging

摘要: Mitochondrial pH plays a pivotal role in the regulation of physiological process. Developing ratiometric fluorescent probes for real-time detection of mitochondrial pH fluctuation is still highly demanded yet challenging. Herein, we present a novel strategy to design a ratiometric probe (FDI) by broadening absorption spectrum (360-700 nm) of fluorescein fluorophore. Unsaturated dialkene/indole quaternary ammonium moiety has broadened absorption and emission spectrum of fluorescein fluorophore to provide ratiometric detection by CLSM in dual excitation/dual emission mode, as well as directionally accumulated in mitochondria in living cells. Superior to commercially mitochondrial tracker, Carboxy-SNARF, probe FDI exhibits excellent and fast cell-membrane permeability and mitochondrial-targetability. It has been demonstrated that FDI could permit real-time monitoring of pH alkalization of mitochondria stimulated by chloroquine. Owing to nondestructive process and reversible ratiometric response to pH, image acquisition can be repeated frequently to trace and monitor the time course of mitochondrial pH responses. It is clearly confirmed that FDI would be a promising probe for real-time tracking of mitochondrial pH changes in the biomedical and biological fields. (C) 2017 Elsevier B.V. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学