• 其他栏目

    谢晴

    • 高级工程师    
    • 主要任职:无
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 在职信息:在职
    • 所在单位:环境学院
    • 学科:环境工程
    • 办公地点:环境楼A315
    • 电子邮箱:

    访问量:

    开通时间 :..

    最后更新时间:..

    Distinct photoproducts of hydroxylated polybromodiphenyl ethers from different photodegradation pathways: a case study of 2 '-HO-BDE-68

    点击量:

    论文类型:期刊论文

    第一作者:Xie, Qing

    通讯作者:Chen, JW (reprint author), Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Sch Environm Sci & Technol, Dalian 116024, Peoples R China.

    合写作者:Chen, Jingwen,Zhao, Hongxia,Wang, Xingbao,Xie, Hong-Bin

    发表时间:2015-02-01

    发表刊物:ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS

    收录刊物:Scopus、PubMed、SCIE

    卷号:17

    期号:2

    页面范围:351-357

    ISSN号:2050-7887

    摘要:Hydroxylated polyhalodiphenyl ethers (HO-PXDEs) are emerging aquatic pollutants. Previous studies have shown that HO-PXDEs can photogenerate dioxins and phenolic compounds. However, it is unclear which photochemical pathways are responsible for the various photoproducts. This study investigates the direct photolysis and photooxidation initiated by O-1(2) and (OH)-O-center dot that can be formed by photosensitization, taking 2'-HO-2,3',4,5'-tetrabromodiphenyl ether (2'-HO-BDE-68) as a case study. The results show that 1,3,8-tribromodibenzo-p-dioxin can only be produced during direct photolysis. By mass spectrum analysis, four dihydroxylated polybromodiphenyl ethers, generated from both direct and indirect photodegradation were confirmed. Among them, di-HO-tribromodiphenyl ether (di-HO-TBDE) was the main product generated from direct photohydrolysis. Most probably, the di-HO-TBDE is 2',5'-HO-2,3',4-tribromodiphenyl ether, as was suggested by density functional theory calculations. Ether bond cleavage is a dominant pathway for the direct photolysis and photooxidation reactions leading to 2,4-dibromophenol as the dominant product. The yields of the products, which are irrespective of reaction time and can be employed to compare the ability of different HO-PXDEs to photogenerate a given product, were reported. This study indicates that for accurate ecological risk assessment of HO-PXDEs, their different photodegradation pathways that may lead to different photoproducts should be considered.