亚斌

(副教授)

 硕士生导师
学位:博士
性别:男
毕业院校:大连理工大学
所在单位:材料科学与工程学院
电子邮箱:yabin@dlut.edu.cn

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Numerical simulation of the mechanical properties of a carbon-fiber-reinforced hollow glass microsphere-epoxy syntactic foam

发表时间:2019-03-13 点击次数:

论文名称:Numerical simulation of the mechanical properties of a carbon-fiber-reinforced hollow glass microsphere-epoxy syntactic foam
论文类型:期刊论文
发表刊物:JOURNAL OF APPLIED POLYMER SCIENCE
收录刊物:SCIE、Scopus
卷号:136
期号:8
ISSN号:0021-8995
关键字:composites; fibers; foams; mechanical properties; thermosets
摘要:The addition of carbon fibers has a great influence on the mechanical properties of hollow glass microsphere (HGM)-epoxy syntactic foam. Thus, to elucidate the reinforcement mechanism, the numerical simulation of HGM- and carbon-fiber-filled epoxy matrixes was carried out. The effect of the orientation of carbon fibers on the elastic modulus and stress distribution was studied. The effect of the elastic modulus of the matrix on the change of force was also studied. We noted that the orientation of carbon fibers affected the elastic modulus of the matrix, and when the carbon fibers were distributed in the direction of force, the elastic modulus of the matrix reached its maximum. The maximum stress of HGMs decreased with increasing matrix elastic modulus, and the mechanical properties of the syntactic foam increased with increasing elastic modulus of the matrix. When the carbon fibers were distributed in the direction of the force, the enhancement effect was the best. Because the carbon fibers had a higher elastic modulus than the matrix, the degree of compressive deformation of the carbon fibers was smaller than that of the matrix. During compression, carbon fibers were pulled out and consumed a lot of energy. Thus, the mechanical properties of the syntactic foam were improved. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47083.
发表时间:2019-02-20