• 更多栏目

    张培立

    • 副教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 学科:精细化工
    • 办公地点:化工实验楼E308
    • 电子邮箱:peilizhang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Hierarchically Structured FeNiOx Hy Electrocatalyst Formed by In Situ Transformation of Metal Phosphate for Efficient Oxygen Evolution Reaction.

    点击次数:

    论文类型:期刊论文

    发表时间:2018-01-01

    发表刊物:ChemSusChem

    收录刊物:SCIE、EI

    卷号:11

    期号:11

    页面范围:1761-1767

    ISSN号:1864-564X

    关键字:electrocatalysis,ion exchange,metal hydroxides,porous materials,water oxidation

    摘要:A simple and low-cost fabrication method is needed to obtain effective and robust heterogeneous catalysts for the oxygen evolution reaction (OER). In this study, an electrocatalyst FeNiOx Hy with a hierarchical structure is synthesized on nickel foam by a simple fabrication method through anion exchange from a metal phosphate to a metal hydroxide. The as-fabricated FeNiOx Hy electrode requires overpotentials of 206 and 234 mV to deliver current densities of 10 and 50 mAcm-2 , respectively. The catalytic performance of FeNiOx Hy is superior to that of most previously reported FeNi-based catalysts, including NiFe layered double hydroxide. The catalyst also shows good long-term durability at a current density of 50 mAcm-2 over 50 h with no activity decay under 1m KOH. By comparison to the directly electrodeposited FeNi hydroxide in morphology and electrochemical properties, the improved activity of the catalyst could be mainly attributed to an enhancement of its intrinsic activity, which was caused by the anion exchange of phosphate to (oxy)hydroxide. Further studies by cyclic voltammetry indicated a stronger interaction between Ni and Fe from the negative shift of the oxidation peak of Ni2+ /Ni3+ in comparison with reported FeNiOx Hy , which promoted the generation of active Ni3+ species more easily. This work may provide a new approach to the simple preparation of effective and robust OER catalysts by anion exchange. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.