大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

主要任职: 国防(先进)科学技术发展研究院副院长

性别: 男

毕业院校: 中国科技大学

学位: 博士

在职信息:在职

所在单位: 软件学院

学科: 计算机应用技术 软件工程

电子邮箱:

手机版

访问量:

开通时间 : ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Multi-view clustering via multi-manifold regularized non-negative matrix factorization

点击量:

论文类型: 期刊论文

第一作者: Zong, Linlin

通讯作者: Zhang, XC (reprint author), Dalian Univ Technol, Dalian 116620, Peoples R China.

合写作者: Zhang, Xianchao,Zhao, Long,Yu, Hong,Zhao, Qianli

发表时间: 2017-04-01

发表刊物: NEURAL NETWORKS

收录刊物: EI、PubMed、Scopus、SCIE

卷号: 88

页面范围: 74-89

ISSN号: 0893-6080

关键字: Non-negative matrix factorization; Multi-view clustering; Multi-manifold; Locally linear embedding (LLE)

摘要: Non-negative matrix factorization based multi-view clustering algorithms have shown their competitiveness among different multi-view clustering algorithms. However, non-negative matrix factorization fails to preserve the locally geometrical structure of the data space. In this paper, we propose a multi-manifold regularized non-negative matrix factorization framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for multi-view clustering. MMNMF incorporates consensus manifold and consensus coefficient matrix with multi-manifold regularization to preserve the locally geometrical structure of the multi-view data space. We use two methods to construct the consensus manifold and two methods to find the consensus coefficient matrix, which leads to four instances of the framework. Experimental results show that the proposed algorithms outperform existing non-negative matrix factorization based algorithms for multi-view clustering. (C) 2017 Elsevier Ltd. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学