大连理工大学  登录  English 
张宪超
点赞:

教授   博士生导师   硕士生导师

主要任职: 国防(先进)科学技术发展研究院副院长

性别: 男

毕业院校: 中国科技大学

学位: 博士

在职信息:在职

所在单位: 软件学院

学科: 计算机应用技术 软件工程

电子邮箱:

手机版

访问量:

开通时间 : ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Discovering social spammers from multiple views0

点击量:

论文类型: 期刊论文

第一作者: Shen, Hua

通讯作者: Zhang, XC (reprint author), Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China.

合写作者: Ma, Fenglong,Zhang, Xianchao,Zong, Linlin,Liu, Xinyue,Liang, Wenxin

发表时间: 2017-02-15

发表刊物: NEUROCOMPUTING

收录刊物: SCIE、EI、Scopus

卷号: 225

期号: 225

页面范围: 49-57

ISSN号: 0925-2312

关键字: Social spammer detection; Multi-view learning; Social regularization term

摘要: Online social networks have become popular platforms for spammers to spread malicious content and links. Existing state-of-the-art optimization methods mainly Use one kind of user-generated information (i.e., single view) to learn a classification model for identifying spammers. Due to the diversity and variability of spammers' strategies, spammers' behavior may not be completely characterized only by single view's information. To tackle this challenge, we first statistically analyze the importance of considering multiple view information for spammer detection task on a large real-world Twitter dataset. Accordingly, we propose a generalized social spammer detection framework by jointly integrating multiple view information and a novel social regularization term into a classification model. To keep the completeness of the original dataset and detect more spammers by the proposed method, we introduce a simple strategy to fill the missing data for each view. Experimental results on a real-world Twitter dataset show that the proposed method outperforms the existing methods significantly.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学