赵慧敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:环境学院A309

联系方式:0411-84706800

电子邮箱:zhaohuim@dlut.edu.cn

扫描关注

论文成果

当前位置: 赵慧敏 >> 科学研究 >> 论文成果

Enhanced photocatalytic performance of a two-dimensional BiOIO3/g-C3N4 heterostructured composite with a Z-scheme configuration

点击次数:

论文类型:期刊论文

发表时间:2018-12-05

发表刊物:APPLIED CATALYSIS B-ENVIRONMENTAL

收录刊物:SCIE、Scopus

卷号:237

页面范围:947-956

ISSN号:0926-3373

关键字:Photocatalysis; g-C3N4; Layered heterojunction; Z-scheme

摘要:The construction of efficient photocatalytic systems has received considerable attention in the fields of water splitting and environmental remediation because of the great potential of these systems to solve the current energy-related and environmental problems. Herein, a two-dimensional BiOIO3/graphitic carbon nitride (g-C3N4) heterostructured composite bearing BiOIO3 nanoplates coupled with g-C3N4 nanosheets has been fabricated through a facile electrostatic self-assembly method. The as-prepared hybrids exhibit significantly improved photocatalytic activities toward 2,4,6-trichlorophenol (2,4,6-TCP) degradation and hydrogen evolution in water splitting under simulated solar light irradiation over those of bare g-C3N4. The apparent rate constant, k, for 2,4,6-TCP degradation (0.97 h(-1)) and the hydrogen evolution rate (56.4 h(-1)) of the BiOIO3/g-C3N4 composites are approximately 4.8 and 3.5 times higher, respectively, than those of g-C3N4. The outstanding activity of the hybrids arises from the Z-scheme charge transfer mode, which imparts a superior photogenerated carrier separation ability and strong redox capability. In this Z-scheme, the I-3(-)/I- redox pairs formed at the contact interface between BiOIO3 and g-C3N4 act as electron mediators. This work provides insight into the rational design of other two-dimensional Z-scheme composites with applications in solar energy conversion and environmental remediation.