赵智强

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程

办公地点:西部校区 新环境楼 B607

电子邮箱:zhiqiangzhao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth

点击次数:

论文类型:期刊论文

发表时间:2017-04-01

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:SCIE、EI、ESI高被引论文、Scopus

卷号:313

页面范围:10-18

ISSN号:1385-8947

关键字:Direct interspecies electron transfer (DIET); Conductive carbon cloth; Syntrophic metabolism; Anaerobic methanogenesis; Acidic impact

摘要:Anaerobic digesters usually become sour during the operation and inhibit methanogenesis. This effect occurs due to the interspecies electron exchange for the syntrophic metabolisrh of alcohols and volatile fatty acids (VFAs) via interspecies H-2 transfer (IHT). Conductive materials can promote direct interspecies electron transfer (DIET) between the syntrophs and methanogens, providing an alternative to IHT. However, the cooperative mechanism of these two working modes during syntrophic metabolism is unknown, especially during acidic impacts. The results of this study demonstrated that anaerobic digesters supplemented with conductive carbon cloth had a higher capacity to resist the acidic impacts. Conversely, the digesters supplemented with non-conductive cotton cloth (control) were nearly stagnant when the H2 partial pressure of the anaerobic systems increased. Further experiments at high H-2 partial pressure to inhibit IHT exhibited almost no effect on the syntrophic metabolism in the carbon cloth-supplemented group, in which the methane production approached the stoichiometric production (350 mL CH4/g COD removal), while the methane production in the control group ceased. The microbial community analysis revealed that the surface sludge attached to the carbon cloth had the highest abundance of Geobacter and Methanosaeata species known to participate in DIET. These results suggested that the predominant working mode for the interspecies electron exchange might have shifted from IHT to DIET in the presence of the conductive carbon cloth during acidic impacts. DIET primarily occurred on the surface sludge of the carbon cloth and replaced IHT to proceed the syntrophic metabolism and maintained stable anaerobic methanogenesis. (C) 2016 Elsevier B.V. All rights reserved.