周扬

个人信息Personal Information

副研究员

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水工结构工程

电子邮箱:zhouy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Stochastic seismic response and stability reliability analysis of a vertical retaining wall in front of the pumping station of a nuclear power plant using the probability density evolution method

点击次数:

论文类型:期刊论文

发表时间:2018-08-01

发表刊物:NUCLEAR ENGINEERING AND DESIGN

收录刊物:SCIE

卷号:334

页面范围:110-120

ISSN号:0029-5493

关键字:Vertical retaining wall; Nuclear power plant; Stochastic seismic response; Stability reliability; Probability density evolution method

摘要:Vertical retaining walls are widely used to protect the water intake and drainage structures of nuclear power plants (NPPs); in particular, they are built as the inlet in front of the pumping station pool. It is of great significance to investigate the seismic behavior of the vertical retaining walls considering the uncertain nature of earthquakes according to the nuclear safety design requirements. The probability density evolution method (PDEM), which is a new and efficient methodology, is proposed here to study the stochastic seismic response and stability reliability of a vertical retaining wall in front of the pumping station pool of a NPP. Firstly, a set of representative acceleration time histories of non-stationary earthquake ground motions are generated by the spectral representation random function method according to the RG1.60 spectra for the NPP project design. Then, a series of deterministic stochastic seismic response analysis of a 26-m-high vertical retaining wall are performed. Finally, the probability information and seismic reliability of the vertical retaining wall under two seismic levels (SL-1 (operating-basis earthquake) and SL-2 (safety shutdown earthquake)) are obtained based on two physical parameters: the anti-sliding safety factor and anti-overturning safety factor. The results demonstrate that the proposed method of investigating the stochastic responses and seismic reliability of vertical retaining walls can provide more objective indices to evaluate the seismic safety during SL-1 and SL-2 seismic events. Furthermore, the proposed method can effectively investigate the ultimate seismic capacity of vertical retaining walls and other geo-structures in NPPs.