赵淑艳

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:南开大学

学位:博士

所在单位:化工海洋与生命学院

学科:环境科学

办公地点:D05-314

联系方式:0427-2631790

电子邮箱:zhaoshuyan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems

点击次数:

论文类型:期刊论文

发表时间:2017-01-01

发表刊物:ENVIRONMENTAL POLLUTION

收录刊物:SCIE、EI、PubMed、Scopus

卷号:220

期号:Pt A

页面范围:124-131

ISSN号:0269-7491

关键字:10:2 FTOH; Bioaccumulation; Biotransformation; Wheat; Earthworm

摘要:The behavior of 10:2 fluorotelomer alcohol (10:2 FTOH) in the systems of soil-earthworm (Eisenia fetida), soil-wheat (Triticum aestivum L.) and soil-earthworm-wheat, including degradation in soil, uptake and metabolism in wheat and earthworms were investigated. Several perfluorocarboxylic acids (PFCAs) as degradation products of 10:2 FTOH were identified in the soil, plant and earthworms. 10:2 FTOH could be biodegraded to perfluorooctanoate (PFOA), perfluorononanate (PFNA) and perfluorodecanoate (PFDA) in soil in the absence or presence of wheat/earthworms, and PFDA was the predominant metabolite. Accumulation of initial 10:2 FTOH and its metabolites were observed in the wheat and earthworms, suggesting that 10:2 FTOH could be bioaccumulated in wheat and earthworms and biotransformed to the highly stable PFCAs. Perfluoropentanoic acid (PFPeA), perfluorohexanoic (PFHxA) and PFDA were detected in wheat root, while PFDA and perfluoroundecanoic acid (PFUnDA) were detected in shoot. PFNA and PFDA were determined in earthworms and the concentration of PFDA was much higher. The presence of earthworms and/or plant stimulated the microbial degradation of 10:2 FTOH in soil. The results supplied important evidence that degradation of 10:2 FTOH was an important potential source of PFCAs in the environment and in biota. (C) 2016 Elsevier Ltd. All rights reserved.