![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:土木工程系
学科:供热、供燃气、通风及空调工程. 制冷及低温工程
办公地点:综合实验4号楼
联系方式:0411-84706407
电子邮箱:sgwang@dlut.edu.cn
Analytical prediction of coal spontaneous combustion tendency: Velocity range with high possibility of self-ignition
点击次数:
论文类型:期刊论文
发表时间:2017-05-01
发表刊物:FUEL PROCESSING TECHNOLOGY
收录刊物:SCIE、EI
卷号:159
页面范围:38-47
ISSN号:0378-3820
关键字:Analytical solution; Velocity range; Critical temperature; Coal spontaneous combustion
摘要:Coal spontaneous combustion is an inherent problem in coal mines throughout the world. The analysis of stationary-states, including stable point and critical point, is an effective method to judge its ignition tendency. A lower critical point temperature means that it is more likely to cause fire. In the past, due to the limitation of mathematical methods, the consumption and distribution of oxygen concentration are usually neglected. In order to accurately analyze coal ignition tendency, this paper takes coal bulk as a porous system and develops an improved model by a combination of oxygen species and energy equation. The model is solved for stationary-states of the system. Qualitative analysis of the stationary-states gives a mechanism explanation for the reason why coal spontaneous ignition is hard to be extinguished and indicates that the temperature of initial endpoint and that of internal site can be uniquely determined from each other. It further points out a trend that the location of critical point moves inward as the inlet air velocity increases, which correlates well with simulation results of the existing literatures. Then, for stationary-states, calculation results of Killoch 6015 coal are obtained. Quantitative analysis of them finds a trend that the temperature of critical point rises rapidly after its slow increase. At last, a velocity range, in which the possibility of fire is extremely high, is presented by simulation computation, e.g., the range of Killoch 6015 coal is determined as 8 x 10(-5) -3 x 10(-3) m/s when the critical ignition temperature is set as 150 degrees C. (C) 2016 Published by Elsevier B.V.