![]() | 1905 |
个人信息Personal Information
高级工程师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学
办公地点:理工西部校区实验楼F308
联系方式:rzhang@dlut.edu.cn
电子邮箱:rzhang@dlut.edu.cn
Binding of 4-(N,N-dimethylamino)pyridine to Salen- and Salan-Cr(III) Cations: A Mechanistic Understanding on the Difference in Their Catalytic Activity for CO2/Epoxide Copolymerization
点击次数:
论文类型:期刊论文
发表时间:2009-04-06
发表刊物:INORGANIC CHEMISTRY
收录刊物:SCIE、PubMed
卷号:48
期号:7
页面范围:2830-2836
ISSN号:0020-1669
摘要:The coordination chemistry of 4-(N,N-dimethylamino)pyridine (DMAP) with Salen- or Salan- (where the tetradentate N,N'-disubstituted bisaminophenoxide is designated as Salan, a saturated version of the Schiff-base Salen ligand) chromium complexes was studied by electrospray ionization mass spectrometry (ESI-MS). The relative stabilities of mono DMAP adducts of these chromium complexes were characterized by collision-induced dissociation (CID) and further discussed with regard to the activity in catalyzing CO2/epoxide copolymerization. [SalenCr](+) cations preferably bind two DMAP molecules to form six-coordinated complex ions, while [SalanCr](+) cations usually bind one molecule of DMAP to form five-coordinated complex ions, which were found to be relatively unstable. The remarkable difference in the coordination of DMAP to these two chromium complexes resulted in a significant difference in catalytic activity for the alternating copolymerization of CO2 and propylene oxide. In the presence of 1 equiv of DMAP, the activity of the chromium-Salan complex 2a was up to 86 h(-1) of TOF at ambient temperature, which was about 30 times that of the corresponding chromium-Salen complex la. In sharp contrast to a long induction period up to 2 h with the use of la in conjunction with DMAP as catalyst, no initiation time or a very short one was observed in the binary 2a/DMAP catalyst systems. The initiator role of DMAP was confirmed by continuous determination of the propagating polymer species at various intervals using ESI-MS, which in combination with a kinetic study by means of infrared spectroscopy resulted in a mechanistic understanding on the difference in activity of the two catalyst systems for CO2/epoxide copolymerization.