![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连工学院
所在单位:机械工程学院
电子邮箱:ouzyg@dlut.edu.cn
A hierarchical FloatBoost and MLP classifier for mobile phone embedded eye location system
点击次数:
论文类型:会议论文
发表时间:2006-05-28
收录刊物:EI
卷号:3972 LNCS
页面范围:20-25
摘要:This paper is focused on cellular phone embedded eye location system. The proposed eye detection system is based on a hierarchy cascade FloatBoost classifier combined with an MLP neural net post classifier. The system firstly locates the face and eye candidates' areas in the whole image by a hierarchical FloatBoost classifier. Then geometrical and relative position information of eye-pair and the face are extracted. These features are input to a MLP neural net post classier to arrive at an eye/non-eye decision. Experimental results show that our cellular phone embedded eye detection system can accurately locate double eyes with less computational and memory cost. It runs at 400ms per image of size 256×256 pixels with high detection rates on a SANYO cellular phone with ARM926EJ-S processor that lacks floating-point hardware. © Springer-Verlag Berlin Heidelberg 2006.