更多
论文成果
Artificial neural networks in prediction of mechanical behavior of high performance plastic composites
点击次数:
论文类型: 会议论文
发表时间: 2011-11-04
收录刊物: EI、CPCI-S、Scopus
卷号: 501
页面范围: 27-+
关键字: artificial neural network; composites; ANN
摘要: Using a feed-forward artificial neural network (ANN), the tensile strength of a series of poly(phthalazinone ether sulfone ketone)(PPESK) blended with different contents of polyetheretherketone(PEEK), polysulfone(PSF), polyphenylene sulide (PPS) and reinforced with various amounts of whisker(TK) composites has been predicted based on a measured database. Compared with the experimental results, the maximum error obtained is not more than 0.8%. It is concluded that the predicted data are well acceptable. A well-trained ANN is expected to be very helpful mathematical tool in the structure-property analysis of polymer composites. Finally, using ANN modeling data and experimental data, the tensile strength properties related to whisker weight percent were established.

蹇锡高

教授   博士生导师   硕士生导师

性别: 男

毕业院校:大连工学院

学位: 硕士

所在单位:化工学院

学科:高分子材料. 高分子化学与物理. 膜科学与技术

联系方式:手机:13904286124

电子邮箱:jian4616@dlut.edu.cn

邮箱 : jian4616@dlut.edu.cn

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学
访问量: 手机版 English 大连理工大学 登录

开通时间:..

最后更新时间:..