Indexed by:期刊论文
Date of Publication:2018-04-01
Journal:APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Included Journals:Scopus、SCIE、PubMed
Volume:184
Issue:4
Page Number:1219-1231
ISSN No.:0273-2289
Key Words:Excess sludge; Rumen microorganisms; Lignocellulose biodegradation; Biogas production; Feedstock concentration
Abstract:A methane production system with continuous stirred-tank reactor, rumen liquid as inoculate microorganisms, and paper mill excess sludge (PES) as feedstock was studied. The work mainly focused on revealing the effect of feedstock concentration on the biogas production, which was seldom reported previously for the current system. The optimal fermentation conditions were found as follows: pH = 7, T = 39 +/- 1 A degrees C, sludge retention time is 20 days, sludge with total solids (TS) are 1, 2, 3.5, 5, 10, and 13% in weight. Daily gas yields were measured, and biogas compositions were analyzed by gas chromatograph. Under such conditions, the optimum input TS was 10 wt%, and the biogas yield and volume gas productivity were 280.2 mL/g center dot TS and 1188.4 mL L-1 center dot d(-1), respectively. The proportions of CH4 and CO2 in the biogas were 65.1 and 34.2%. The CH4 yield reached 182.7 mL/g VS (volatile suspended solid), which was higher than previously reported values. The findings of this work have a significant effect on promoting the application of digesting PES by rumen microorganisms and further identified the technical parameter.
Pre One:Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis
Next One:High Mass and Specific Activity for Ammonia Electro-oxidation through Optimization of Dispersion Degree and Particle Size of Pt-Ir Nanoparticles over N-Doped Reductive Graphene Oxide
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连工学院
Degree:Master's Degree
School/Department:环境学院
Open time:..
The Last Update Time:..