Indexed by:期刊论文
Date of Publication:2017-03-01
Journal:JOURNAL OF MEMBRANE SCIENCE
Included Journals:SCIE、EI、Scopus
Volume:525
Page Number:202-209
ISSN No.:0376-7388
Key Words:Oxygen reduction reaction (ORR); Membrane bioreactor (MBR); Microbial fuel cell (MFC); Granular activated carbon (GAC); Tetracycline hydrochloride
Abstract:In this study, membrane bioreactor (MBR) and microbial fuel cell (MFC) was coupled for wastewater treatment using a polyvinylidene fluoride (PVDF) coated carbon fiber cloth as cathode membrane. To generate more power and mitigate membrane fouling, granular activated carbon (GAC) was added as a dynamic layer on cathode membrane. With or without FeOOH/TiO2 doping on GAC, 2e(-) or 4e(-) oxygen reduction reactions (ORRs) took place. The maximum power density reached 5.1 W m(-3) via 4e(-) ORR, practically the highest compared to similar MBR/MFC coupled systems. The removal of COD and NH4+-N was 90% and 80%, respectively. With FeOOH/ TiO2/GAC, hydrogen peroxide (H2O2) was formed via 2e(-) ORR, at 0.13 mg L-1 in effluent. Oxidative removal of a model pollutant tetracycline hydrochloride was 90% by reactive oxidizing species such as center dot OH. This is the first report of H2O2 synthesis using doped GAC as expanded cathode in coupled bio-electrochemical MBR/MFC system. Compared to other electrochemical systems, our bio-electrochemical system was more energy-saving and environmental-friendly in wastewater treatment.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连工学院
Degree:Master's Degree
School/Department:环境学院
Open time:..
The Last Update Time:..