杨凤林
Personal Homepage
Paper Publications
Synergetic adsorption and catalytic oxidation performance originating from leafy graphite nanosheet anchored iron(II) phthalocyanine nanorods for efficient organic dye degradation
Hits:

Indexed by:期刊论文

Date of Publication:2015-01-01

Journal:RSC ADVANCES

Included Journals:SCIE、EI、Scopus

Volume:5

Issue:33

Page Number:26132-26140

ISSN No.:2046-2069

Abstract:Leafy graphite nanosheet anchored iron(II) phthalocyanine nanorods (FePc@LGNS) were facilely synthesized without using a complex covalent anchoring procedure. FE-SEM, XRD, FTIR, and XPS characterizations confirmed the molecular configuration of FePc on the LGNS surface. The interlaced hydrophobic/hydrophilic regions and large specific-surface-area of the FePc@LGNS hybrid not only improved the adsorption capacity, but also promoted the oxidative ability of the FePc@LGNS-H2O2 system due to sufficient FePc catalytic active sites on LGNS surface. The optimal conditions for CR removal were initially pH 6.98, 50 mM H2O2 and 1.0 g L-1 FePc@LGNS hybrid. Different from the classical Fenton process, high-valent iron(IV)-oxo complexes and hydroxyl radicals are responsible for Congo red (CR) oxidative degradation. Liquid chromatography-mass spectrometry (LC-MS) analysis demonstrated the effective cleavage of both azo bonds and C-C bonds of CR molecules. A plausible oxidation mechanism of the FePc@LGNS-H2O2 system and the degradation pathway of CR were proposed. This FePc@LGNS-H2O2 system could be a highly efficient oxidation process for recalcitrant pollutants elimination over a wide pH range.

Personal information

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Male

Alma Mater:大连工学院

Degree:Master's Degree

School/Department:环境学院

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version