杨凤林
Personal Homepage
Paper Publications
Rotating a helical membrane for turbulence enhancement and fouling reduction
Hits:

Indexed by:期刊论文

Date of Publication:2012-02-01

Journal:CHEMICAL ENGINEERING JOURNAL

Included Journals:SCIE、EI

Volume:181

Page Number:486-493

ISSN No.:1385-8947

Key Words:Rotating helical membrane; Turbulence enhancement; Membrane fouling

Abstract:To reduce fouling, enhance turbulence and permeate flux in membrane filtrations, similar to the rotating disk membrane modules, in this paper, a new helical membrane was rotated and its features in filtrating different particle suspensions such as yeast, kaolin and CaCO3 in a cylindrical container were studied. About 27% enhancement of stable flux can be maintained by rotating a 360 degrees helical membrane, comparing with rotating a same sized flat membrane, at a rotating speed of 160 rpm. The flux enhancement and fouling reduction were affected by the helical angles (best at 360 degrees) of the membrane module, the enhancement in turbulence intensity and the hydraulic flow regime and dimensions, such as the ratio of the membrane width to the diameter of the separation unit. The stable permeate flux of rotating a 360 degrees helical membrane were higher than that of rotating a flat membrane both at 5.3 kPa or 6.5 kPa, a higher flux enhancement at 6.5 kPa was observed. The order of membrane fouling was yeast > kaolin > nano-CaCO3 when the particles concentrations were all at 5.0 g l(-1). Fouling is less severe when the diameter of separation units is smaller, and vice versa. Rotating a helical membrane is specifically useful for stirring separations without aeration. (C) 2011 Elsevier B.V. All rights reserved.

Personal information

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Male

Alma Mater:大连工学院

Degree:Master's Degree

School/Department:环境学院

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version