教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连工学院
学位: 硕士
所在单位: 环境学院
电子邮箱: yangfl@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2018-11-01
发表刊物: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
收录刊物: PubMed、SCIE、Scopus
卷号: 25
期号: 32
页面范围: 32791-32801
ISSN号: 0944-1344
关键字: Forward osmosis; External concentration polarization; Corrugated wall channel module; Vortex
摘要: Much work has been conducted on the topic of forward osmosis (FO), but only a few studies have focused on mitigating external concentration polarization (ECP). This study introduced a simple structure, the corrugated wall channel, to the design of FO module, to induce vortex, and then mitigate ECP. In this study, the corrugated wall channel module (CWCM) was tested under given conditions, with a traditional flat membrane module (FMM) as control. CWCM could mitigate ECP and then enhance water flux. When deionized water was taken as feed solution (FS) and 2-M NaCl solution as draw solution (DS), the water flux enhancement was 16.49 and 18.51% in FO mode (active layer facing FS) and PRO mode (active layer facing DS), respectively. When 0.5-M NaCl solution was taken as FS, the corresponding values were 15.92 and 17.13%, respectively. Computational fluid dynamics (CFD) analysis showed that the CWCM could induce vortex, promote the mixing of the solution in the module, and further contribute to the increase of water flux. The specific shape of CWCM affected its performance on mitigating ECP. Also, the more tortuous CWCM exhibited higher water flux. In addition, CWCM could lessen membrane fouling.
上一条: Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved o
下一条: Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor