教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连工学院
学位: 硕士
所在单位: 环境学院
电子邮箱: yangfl@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2016-07-15
发表刊物: JOURNAL OF HAZARDOUS MATERIALS
收录刊物: SCIE、EI、PubMed
卷号: 312
页面范围: 175-183
ISSN号: 0304-3894
关键字: Anammox; Nitric oxide treatment; Complex adsorption; Fe(II)EDTA-NO; Kuenenia stuttgartiensis
摘要: High-efficiency Fe(II)EDTA (approximately 80%) was selected to remove nitric oxide (NO) in a complex adsorption process; subsequently, this Fe(II)EDTA was combined with the anammox process to eliminate the NO in flue gas. The Fe(Il)EDTA-NO solution negatively affected the conventional nitrite-dependent anammox bacteria when the solution concentration exceeded 0.5 mM. Fe(II)EDTA-NO-cultivated anammox bacteria removed the ammonium coupled to complex NO reduction (<= 3.5 mM). The batch test results demonstrated that NH4+ was eliminated through Fe(II)EDTA-NO reduction via anammox. The removal of complex NO and NH4+ exhibited high relativity relevance, and the Fe(II)EDTA-NO/NH4+ molar ratio was approximately 0.97. The complex NO-dependent process generates lesser nitrate than that generated by conventional anammox. Moreover, Candidatus Kuenenia stuttgartiensitiensis became the dominant anammox bacterial community when the biomass is cultivated using the inoculated bacteria, and the proportion of the former increased to 90% from the initial 38% for ribosomal intergenic spacer analysis and library construction. (C) 2016 Elsevier B.V. All rights reserved.