大连理工大学  登录  English 
杨凤林
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连工学院

学位: 硕士

所在单位: 环境学院

电子邮箱: yangfl@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
An ideal visible nanocomposite (Fe/GTiP) photoanode catalyst for treatment of antibiotics in water and simultaneous electricity generation in the photocatalytic fuel cell

点击次数:

论文类型: 期刊论文

发表时间: 2019-08-13

发表刊物: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

收录刊物: EI、SCIE

卷号: 44

期号: 39

页面范围: 21703-21715

ISSN号: 0360-3199

关键字: Fe/GTiP; PFC; Electricity generation; Removal; Berberine chloride; Tetracycline hydrochloride

摘要: The photocatalytic fuel cell (PFC) has been studied for the wastewater treatment and electricity generation by degrading antibiotic organic pollutant berberine chloride (BC). Through a simple chemical process Fe/GTiP anode and ZnIn2S4 cathode catalysts were prepared and loaded them on carbon fiber cloth. Up to 79% BC (10 mg/L) was removed with simultaneous electricity generation of 0.65 V within 90 min under pH-7 in PFC by using visible light (two 50-W halogen lamps). PFC is better with 79% BC removal and electricity generation than only 79% removal in photocatalysis (PC) without generating any clean energy. Under photocatalysis Fe/GTiP can remove 70% of BC, higher than 54% with GTiP and 12% with TiP at 50 mg catalyst/50 mL (10 mg/L BC). The photocatalytic performance of Fe/GTiP was also compared with commercial P25 and pure TiO2. The obtained removal of 17.4% and 13.25% BC (10 mg/L) with P25 and TiO2 proves that with more visible light absorption Fe/GTiP has significant photocatalytic effect than P25 and pure TiO2. The impacts of external resistance, concentration of catalyst, pH, and electrolyte were investigated in the PFC. Removal of tetracycline hydrochloride (TC) (10 mg/L) followed the same trend as BC under photocatalysis with Fe/GTiP, GTiP and TiP (78%, 60% and 33% at pH-7). The removal of 89% TC (30 mg/L) in 90 min was also achieved with Fe/GTiP. The experimental study shows that Fe/GTiP visible light nanocomposite is ideal for removing antibiotics in water by photocatalysis or with simultaneous electricity generation through PFC. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学