大连理工大学  登录  English 
岳前进
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 力学与航空航天学院

电子邮箱: yueqj@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Life-Cycle Cost-Effective Optimum Design of Ice-Resistant Offshore Platforms

点击次数:

论文类型: 期刊论文

发表时间: 2009-08-01

发表刊物: JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME

收录刊物: SCIE、EI、Scopus

卷号: 131

期号: 3

页面范围: 1-9

ISSN号: 0892-7219

关键字: design engineering; failure analysis; fatigue; life cycle costing; offshore installations; reliability; vibrations

摘要: In China, the oil and natural gas resources in Bohai Bay are mainly marginal oil fields, which freeze in the winter. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, and maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform. In this paper, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on the cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death, and injury, as well as discounting cost over time are considered. Different reliability analysis approaches involved in life-cycle cost evaluation, such as the global reliability under the extreme ice load, the dynamic reliability, and fatigue life induced by ice vibration, are studied. The proposed life-cycle optimum design formulas are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared with the conventional static design and the optimum dynamic design.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学