郑斯宁

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:基础数学

办公地点:创新园大厦 A1032

电子邮箱:snzheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

STRONG SOLUTIONS TO CAUCHY PROBLEM OF 2D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS

点击次数:

论文类型:期刊论文

发表时间:2017-07-01

发表刊物:DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS

收录刊物:SCIE、Scopus

卷号:37

期号:7

页面范围:3921-3938

ISSN号:1078-0947

关键字:Compressible nematic liquid crystal; vacuum; local strong solution; weighted estimates

摘要:This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via rho (the density of the fluid), u (the velocity of the field), and d (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the LP norm (p > 2) of the velocity u cannot be controlled in terms only of rho(1/2)u and Vu here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-6711 for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.