个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
STRONG SOLUTIONS TO CAUCHY PROBLEM OF 2D COMPRESSIBLE NEMATIC LIQUID CRYSTAL FLOWS
点击次数:
论文类型:期刊论文
发表时间:2017-07-01
发表刊物:DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS
收录刊物:SCIE、Scopus
卷号:37
期号:7
页面范围:3921-3938
ISSN号:1078-0947
关键字:Compressible nematic liquid crystal; vacuum; local strong solution; weighted estimates
摘要:This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via rho (the density of the fluid), u (the velocity of the field), and d (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the LP norm (p > 2) of the velocity u cannot be controlled in terms only of rho(1/2)u and Vu here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-6711 for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.