个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity
点击次数:
论文类型:期刊论文
发表时间:2016-11-01
发表刊物:JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
收录刊物:SCIE、Scopus
卷号:443
期号:1
页面范围:445-452
ISSN号:0022-247X
关键字:Keller-Segel system; Chemotaxis; Singular sensitivity; Boundedness
摘要:We consider a parabolic-parabolic Keller-Segel system of chemotaxis model with singular sensitivity: u(t) = Delta u-chi del.(u/v del v), v(t) = k Delta v - v+u under the homogeneous Neumann boundary condition in a smooth bounded domain Omega subset of R-n (n >= 2), with chi, k > 0. It is proved that for any k > 0, the problem admits global classical solutions, whenever chi is an element of (0,-k-1/2 +1/2 root(k - 1)(2) + 8k/n). The global solutions are moreover globally bounded if n <= 8. This shows a way the size of the diffusion constant k of the chemicals v affects the behavior of solutions. (c) 2016 Elsevier Inc. All rights reserved.