个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Global existence versus blow-up in a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation
点击次数:
论文类型:期刊论文
发表时间:2015-04-01
发表刊物:NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
收录刊物:SCIE、EI、Scopus
卷号:116
页面范围:1-18
ISSN号:0362-546X
关键字:Keller-Segel model; Degenerate diffusion; Nonlocal aggregation; Global existence; Blow-up
摘要:In this paper, we study the degenerate Keller-Segel equation with nonlocal aggregation u(t) = Delta u(m) -del. (uB(u)) in R-d x R+, where m > 1, d >= 3, and B(u) = Delta((-del)(-beta/2) u) with beta is an element of [ 2, d). By analyzing the interaction between the degenerate diffusion and the nonlocal aggregation, we determine the conditions for initial data under which weak solutions globally exist or blow up in finite time with m is an element of (1, d+v/d) .v = d - beta sharper criterion is given for global existence and finite time blow-up of weak solutions with m in the subrange (2d/2d-v, d broken vertical bar v/d) subset of (1, d broken vertical bar v/d) d). (C) 2014 Elsevier Ltd. All rights reserved.