个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Asymptotic behavior of solutions to a degenerate parabolic equation with a gradient source term
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:ASYMPTOTIC ANALYSIS
收录刊物:SCIE、EI、Scopus
卷号:91
期号:2
页面范围:91-102
ISSN号:0921-7134
关键字:degenerate parabolic equation; gradient term; global solution; large time behavior
摘要:In this paper, we investigate positive solutions of the degenerate parabolic equation not in divergence form: ut = u(p) Delta u + u(q) |del u|(2) - u(r), subject to null Dirichlet boundary condition. We study the existence of global solutions and the large time behavior for them. The main effort is paid to obtain uniform asymptotic profiles for decay solutions, under various dominations of the nonlinear diffusion or absorption. It is shown that the large time property of the solution u behaves just like (1+(r-1)t)(-1/r- 1) if the decay is governed by the nonlinear absorption with 1 < r < p+1. Otherwise, the asymptotic profiles would possess the form of (1 + pt)W-1/p, with W solving various homogeneous Dirichlet elliptic equations: (i) -Delta W = W1-p - W if r = p + 1 < q + 2; (ii) -Delta W = W1-p - W + W-1 |del W|(2) if r > p + 1 = q + 2; and (iii) -Delta W = W1-p if r, q + 2 > p + 1.