郑斯宁

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:吉林大学

学位:博士

所在单位:数学科学学院

学科:基础数学

办公地点:创新园大厦 A1032

电子邮箱:snzheng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source

点击次数:

论文类型:期刊论文

发表时间:2014-10-01

发表刊物:MATHEMATICAL METHODS IN THE APPLIED SCIENCES

收录刊物:SCIE、EI、ESI高被引论文、Scopus

卷号:37

期号:15

页面范围:2326-2330

ISSN号:0170-4214

关键字:quasilinear parabolic equations; cell movement (chemotaxis); Keller-Segel system; chemotaxis; global existence; logistic source

摘要:We study a quasilinear parabolic-elliptic Keller-Segel system involving a source term of logistic type u(t)=delta(phi(u)delta u)-delta(u delta v)+g(u),-v=-v+u in x(0,T), subject to nonnegative initial data and the homogeneous Neumann boundary condition in a bounded domain < subset of>Rn with smooth boundary, n1, >0, phi c(1)s(p) for ss(0)>1, and g(s)as-s(2) for s>0 with a,g(0)0, >0. There are three nonlinear mechanisms included in the chemotaxis model: the nonlinear diffusion, aggregation and logistic absorption. The interaction among the triple nonlinearities shows that together with the nonlinear diffusion, the logistic absorption will dominate the aggregation such that the unique classical solution of the system has to be global in time and bounded, regardless of the initial data, whenever , required by globally bounded solutions of the quasilinear K-S system without the logistic source. Copyright (c) 2013 John Wiley & Sons, Ltd.