个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source
点击次数:
论文类型:期刊论文
发表时间:2014-10-01
发表刊物:MATHEMATICAL METHODS IN THE APPLIED SCIENCES
收录刊物:SCIE、EI、ESI高被引论文、Scopus
卷号:37
期号:15
页面范围:2326-2330
ISSN号:0170-4214
关键字:quasilinear parabolic equations; cell movement (chemotaxis); Keller-Segel system; chemotaxis; global existence; logistic source
摘要:We study a quasilinear parabolic-elliptic Keller-Segel system involving a source term of logistic type u(t)=delta(phi(u)delta u)-delta(u delta v)+g(u),-v=-v+u in x(0,T), subject to nonnegative initial data and the homogeneous Neumann boundary condition in a bounded domain < subset of>Rn with smooth boundary, n1, >0, phi c(1)s(p) for ss(0)>1, and g(s)as-s(2) for s>0 with a,g(0)0, >0. There are three nonlinear mechanisms included in the chemotaxis model: the nonlinear diffusion, aggregation and logistic absorption. The interaction among the triple nonlinearities shows that together with the nonlinear diffusion, the logistic absorption will dominate the aggregation such that the unique classical solution of the system has to be global in time and bounded, regardless of the initial data, whenever , required by globally bounded solutions of the quasilinear K-S system without the logistic source. Copyright (c) 2013 John Wiley & Sons, Ltd.