个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions
点击次数:
论文类型:期刊论文
发表时间:2014-04-01
发表刊物:JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
收录刊物:SCIE、Scopus
卷号:412
期号:1
页面范围:326-333
ISSN号:0022-247X
关键字:p-Laplace equation; Changing sign solution; Global existence; Blow-up; Extinction
摘要:This paper studies a fast diffusive p-Laplace equation with the nonlocal source vertical bar u vertical bar(q) - f Omega vertical bar u vertical bar(q) dx in a bounded domain, subject to homogeneous Neumann boundary value condition. A critical criterion is determined that the changing sign solutions blow up in finite time with q > 1 and non-positive initial energy associated, and must be global for any initial energy if q <= 1. In particular, the conditions are obtained under which the changing sign solutions vanish in finite time. (C) 2013 Elsevier Inc. All rights reserved.