个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Critical exponents in a degenerate parabolic equation with weighted source
点击次数:
论文类型:期刊论文
发表时间:2013-04-01
发表刊物:APPLICABLE ANALYSIS
收录刊物:SCIE
卷号:92
期号:4
页面范围:814-830
ISSN号:0003-6811
关键字:degenerate parabolic equation; nonlinear diffusion not in divergence form; critical exponent; second critical exponent; global existence; blow-up
摘要:This article deals with the Fujita-type theorems to the Cauchy problem of degenerate parabolic equation not in divergence form with weighted source u t =u p u+a(x)u q in n x(0,T), where p1, q>1, and the positive weight function a(x) is of the order |x| m with m>2. It was known that for the degenerate diffusion equation in divergence form, the weight function affects both of the critical Fujita exponent and the second critical exponent (describing the critical smallness of initial data required by global solutions via the decay rates of the initial data at space-infinity). Contrarily, it is interesting to prove that the weight function in the present model with degenerate diffusion not in divergence form influences the second critical exponent only, without changing the critical Fujita exponent.