个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
A semilinear parabolic system with coupling variable exponents
点击次数:
论文类型:期刊论文
发表时间:2011-09-01
发表刊物:ANNALI DI MATEMATICA PURA ED APPLICATA
收录刊物:Scopus、SCIE
卷号:190
期号:3
页面范围:525-537
ISSN号:0373-3114
关键字:Variable exponents; Semilinear parabolic system; Maximal solutions; Blow-up; Global solutions; Fujita type conclusion
摘要:This paper deals with semilinear parabolic equations coupled via variable sources, subject to the homogeneous Dirichlet condition in a bounded domain. Since the variable exponents in the sources are just assumed to be positive, the non-linearities may be non-Lipschitz. We establish the existence-uniqueness with comparison principle of local solutions to the regularized problem at first, and then consider the maximal solutions of the original problem as the limits of the solutions of the regularized problem. Some criteria are established for distinguishing global and non-global solutions of the problem, dependent or independent of initial data. Especially, we prove a Fujita type conclusion that the solutions blow up for any non-trivial initial data under certain assumptions on the variable sources and the size of the domain.