个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:创新园大厦 A1032
电子邮箱:snzheng@dlut.edu.cn
Fujita-type conditions for fast diffusion equation with variable source
点击次数:
论文类型:期刊论文
发表时间:2009-01-01
发表刊物:APPLICABLE ANALYSIS
收录刊物:SCIE、Scopus
卷号:88
期号:12
页面范围:1651-1663
ISSN号:0003-6811
关键字:fast diffusion equation; variable source; Fujita-type theorem; blow-up; global solution
摘要:This article studies Fujita-type theorems to the fast diffusion equation with variable source ut=um + up(x), x N, t (0, T), where m is a constant [image omitted] and p(x) is a continuous bounded function 0 p- = inf p p(x) sup p = p+. First, all solutions are global if and only if p+ p0 = 1. Furthermore, when = N, there are nontrivial global solutions when [image omitted], while any nontrivial nonnegative solutions blow up in finite time if [image omitted]. Especially, in the case of [image omitted], there are functions p(x) such that any nontrivial nonnegative solutions blow up in finite time and functions p(x) such that there exist nontrivial global solutions. In addition, for bounded , some Fujita-type conditions are obtained as well: there are functions p(x) and domain such that any nontrivial nonnegative solutions blow up in finite time, and the problem admits nontrivial global solutions provided small enough, independent of the size of p(x).