Hits:
Indexed by:Journal Papers
Date of Publication:2016-01-01
Journal:BIORESOURCE TECHNOLOGY
Included Journals:SCIE、EI、PubMed
Volume:200
Page Number:565-571
ISSN No.:0960-8524
Key Words:Bioelectrochemical system; Microbial fuel cell; Microbial electrolysis cell; Cu(II) and Cd(II) reduction; Cathode material
Abstract:Bioelectrochemical systems (BESs) were first operated in microbial fuel cell mode for recovering Cu(II), and then shifted to microbial electrolysis cells for Cd(II) reduction on the same cathodes of titanium sheet (TS), nickel foam (NF) or carbon cloth (CC). Cu(II) reduction was similar to all materials (4.79-4.88 mg/L h) whereas CC exhibited the best Cd(II) reduction (5.86 +/- 0.25 mg/L h) and hydrogen evolution (0.35 +/- 0.07 m(3)/m(3) d), followed by TS (5.27 +/- 0.43 mg/L h and 0.15 +/- 0.02 m(3)/m(3) d) and NF (4.96 +/- 0.48 mg/L h and 0.80 +/- 0.07 m(3)/m(3) d). These values were higher than no copper controls by factors of 2.0 and 5.0 (TS), 4.2 and 2.0 (NF), and 1.8 and 7.0 (CC). These results demonstrated cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) reduction and hydrogen production in BESs, providing an alternative approach for efficiently remediating Cu(II) and Cd(II) co-contamination with simultaneous hydrogen production. (C) 2015 Elsevier Ltd. All rights reserved.
Pre One:Preparation of Organic-Silica Hybrid Monolith with Anion Exchange/Hydrophilic Interaction Mixed-Mode Via Epoxy-Amine Ring-Opening Polymerization Using Polyethylenimine as Functional Monomer
Next One:Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions