Hits:
Indexed by:Journal Papers
Date of Publication:2015-11-01
Journal:POWDER TECHNOLOGY
Included Journals:SCIE、EI、Scopus
Volume:284
Page Number:418-428
ISSN No.:0032-5910
Key Words:Micro-particle; Temperature; Contact force; Damping coefficient; Deposition
Abstract:A dynamic model has been developed to simulate the normal impact of micro-sized SiO2 particle onto a flat surface at different experimental temperatures. The model describes the impact process through the combination of the static contact theory proposed by Brach et al. and energy dissipation considering both adhesion effect and viscoelastic effect. The present paper focuses on the effects of particle size, incident velocity, temperature, and damping coefficient on the particle/surface collisions. The model is verified by comparing the predicted critical velocities with the experimental results. Specifically, temperature and damping coefficient were treated as variables except for particle size and incident velocity. The influences of the contact force and the contact displacement on the contact time were also analyzed. It is found that both adhesion effect and viscoelastic effect increase with increasing surface temperature, which leads to the increase of critical velocity. (C) 2015 Elsevier B.V. All rights reserved.