李素芬

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:硕士

所在单位:能源与动力学院

办公地点:能源与动力学院718室

联系方式:13084159090

电子邮箱:lisuf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Numerical Study on Heat Transfer Deterioration of Supercritical n-Decane in Horizontal Circular Tubes

点击次数:

论文类型:期刊论文

发表时间:2014-11-01

发表刊物:ENERGIES

收录刊物:SCIE、EI、Scopus

卷号:7

期号:11

页面范围:7535-7554

ISSN号:1996-1073

关键字:supercritical pressure; n-decane; convective heat transfer; heat transfer deterioration; critical condition; numerical study

摘要:In order to obtain a deeper understanding of the regenerative cooling process of scramjet engines, in this paper, a numerical investigation on the supercritical convective heat transfer of n-decane in horizontal circular tubes was conducted, based on a complete set of conservation equations and the Renormalization group (RNG) k-epsilon turbulence model with enhanced wall treatment. The present study mainly focuses on the heat transfer deterioration (HTD) phenomenon, including the mechanism and critical conditions for the onset of HTD. Moreover, the applicability of some conventional heat transfer empirical correlations was analyzed and compared, thus providing guidance for the Nusselt number predictions in the cooling channels. Results indicate that under the compositive conditions of low pressure and high heat flux, two types of HTD phenomena could occur when the wall and bulk fluid temperatures are near the pseudo-critical temperature, owing to the abnormal distributions of near-wall turbulent kinetic energy and radial velocity, respectively. Increasing the pressure would effectively alleviate and eliminate the HTD. A comparison of numerical results with those obtained with different empirical expressions shows that the Bae-Kim expression provides the best agreement, especially when HTD occurs. Furthermore, a new correction for critical heat flux of HTD has been successfully developed.