location: Current position: Home >> Scientific Research >> Paper Publications

Application of a Decoupling Methodology for Development of Skeletal Oxidation Mechanisms for Heavy n-Alkanes from n-Octane to n-Hexadecane

Hits:

Indexed by:期刊论文

Date of Publication:2013-06-01

Journal:ENERGY & FUELS

Included Journals:SCIE、EI、Scopus

Volume:27

Issue:6

Page Number:3467-3479

ISSN No.:0887-0624

Abstract:A series of skeletal mechanisms was developed based on a decoupling methodology to describe the oxidation of n-alkanes from n-octane to n-hexadecane. In the decoupling methodology, a fuel oxidation mechanism is divided into two parts: one is an extremely simplified model for species with a carbon atom number larger than two to simulate the ignition characteristics of n-alkane; the other is a detailed mechanism for H-2/CO/C-1 to predict the concentrations of small molecules, laminar flame speed, and extinction strain rate. The new skeletal mechanism includes only 36 species and 128 reactions for each n-alkane from n-octane to n-hexadecane. The mechanism was extensively validated against the experimental data in a shock tube, jet-stirred reactor, flow reactor, counterflow flame, and premixed laminar flame. Good agreements on ignition delay, the concentrations of major species, laminar flame speed, and extinction strain rate between the predictions and measurements were obtained over wide ranges of temperature, pressure, and equivalence ratio, which demonstrates the capability of the decoupling methodology to build skeletal oxidation mechanisms for n-alkanes. Due to the compact size of the new skeletal mechanism, it can be easily integrated into the computational fluid dynamics (CFD) simulation.

Pre One:瓦斯爆炸火焰结构与压力波的耦合规律

Next One:Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine