解茂昭

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:北京航空学院

学位:硕士

所在单位:能源与动力学院

电子邮箱:xmz@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Experimental study on combustion characteristics of Chinese RP-3 kerosene

点击次数:

论文类型:期刊论文

发表时间:2016-04-01

发表刊物:CHINESE JOURNAL OF AERONAUTICS

收录刊物:SCIE、EI、ISTIC

卷号:29

期号:2

页面范围:375-385

ISSN号:1000-9361

关键字:Combustion mechanism; Combustion stability; Laminar combustion speed; Markstein length; RP-3 kerosene

摘要:In order to illustrate the combustion characteristics of RP-3 kerosene which is widely used in Chinese aero-engines, the combustion characteristics of RP-3 kerosene were experimentally investigated in a constant volume combustion chamber. The experiments were performed at four different pressures of 0.1 MPa, 0.3 MPa, 0.5 MPa and 0.7 MPa, and three different temperatures of 390 K, 420 K and 450 K, and over the equivalence ratio range of 0.6-1.6. Furthermore, the laminar combustion speeds of a surrogate fuel for RP-3 kerosene were simulated under certain conditions. The results show that increasing the initial temperature or decreasing the initial pressure causes an increase in the laminar combustion speed of RP-3 kerosene. With the equivalence ratio increasing from 0.6 to 1.6, the laminar combustion speed increases initially and then decreases gradually. The highest laminar combustion speed is measured under fuel rich condition (the equivalence ratio is 1.2). At the same time, the Markstein length shows the same changing trend as the laminar combustion speed with modification of the initial pressure. Increasing the initial pressure will increase the instability of the flame front, which is established by decreased Markstein length. However, different from the effects of the initial temperature and equivalence ratio on the laminar combustion speed, increasing the equivalence ratio will lead to a decrease in the Markstein length and the stability of the flame front, and the effect of the initial temperature on the Markstein length is unclear. Furthermore, the simulated laminar combustion speeds of the surrogate fuel agree with the corresponding experimental datas of RP-3 kerosene within similar to 10% deviation under certain conditions. (C) 2016 Chinese Society of Aeronautics and Astronautics. Published by Elsevier Ltd.