解茂昭

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:北京航空学院

学位:硕士

所在单位:能源与动力学院

电子邮箱:xmz@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Large eddy simulation of fluid injection under transcritical and supercritical conditions

点击次数:

论文类型:期刊论文

发表时间:2016-10-17

发表刊物:NUMERICAL HEAT TRANSFER PART A-APPLICATIONS

收录刊物:SCIE、EI、Scopus

卷号:70

期号:8

页面范围:870-886

ISSN号:1040-7782

摘要:When a cryogenic fluid initially at a subcritical temperature is injected into a supercritical environment, it will experience a process across a pseudo-boiling point, at which the specific heat reaches its maximum value under the corresponding pressure. Large eddy simulation (LES) is conducted to explore the effects of pseudo-vaporization phenomenon around the pseudo-critical temperature on fluid jet evolution. To highlight the pseudo-vaporization effect, a cryogenic nitrogen jet with different injection temperatures, which correspond to transcritical and supercritical conditions, respectively, is injected into a chamber with same supercritical conditions. All of the thermophysical and transport properties are determined directly from fundamental theories combined with a real fluid equation of state. It is found that when the fluid transits through the pseudo-boiling point, the constant-pressure specific heat reaches a local maximum, while the thermal conductivity and viscosity become minimum. The condition-averaged constant-pressure specific heat suggests that the pseudo-boiling point has the effect of increasing the density gradients. Vorticity and Q-criterion analysis reveals that high-temperature injection facilitates the mixing of jet fluid with ambient gas. Also, the high-temperature injection of supercritical fluid can earlier transit into the full developed region.