个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:建设管理系
学科:工程管理. 防灾减灾工程及防护工程
电子邮箱:yongbo@dlut.edu.cn
Extension Model for Safety Appraisal of Existing Concrete Members Based on an Improved Comprehensive Weighting Method
点击次数:
论文类型:期刊论文
发表时间:2021-01-30
发表刊物:ADVANCES IN CIVIL ENGINEERING
卷号:2018
ISSN号:1687-8086
摘要:An effective evaluation model for safety appraisal of existing concrete members plays a significant role in promoting the management of an existing building. This study aims to introduce extension theory into the safety appraisal of existing concrete members based on five indices (bearing capacity, deflection-to-span ratio, cracks, reinforcement corrosion, and concrete carbonation depth) and inspection data. A matter-element model is established for the safety appraisal of existing concrete members based on matter-element theory. The safety appraisal rating is identified by the comprehensive correlation degrees, which can be calculated by the weights and single-index correlation degrees of the five indices. Owing to the one-sidedness in the single-weighting method, a comprehensive weighting method integrating the merits of subjective weight and objective weight is adopted based on game theory. The interval analytic hierarchy process (IAHP) and entropy weight method are, respectively, used to determine the subjective and objective weight of each index. It was found that the subjective weight vector calculated by IAHP consists of interval numbers. Therefore, the traditional comprehensive weighting method based on game theory needs to be improved by the interval number theory. A comparison analysis between the results generated by the proposed model and an analytic hierarchy process-fuzzy comprehensive evaluation model is conducted. The results show that the matter-element extension model based on comprehensive weight is more accurate and rational. The proposed model makes full use of inspection data and gives a clear safety level to decision makers avoiding disorganized data of a single index. Hence, it can serve as guidance for safety appraisal of existing concrete members in the future. Furthermore, the improved comprehensive weighting method has practical merits and high scientific value in terms of safety evaluation and other applications in different research fields.