location: Current position: Home >> Scientific Research >> Paper Publications

Analytical model for estimating bending angle in laser bending of 304 stainless steel/Q235 carbon steel laminated plate

Hits:

Indexed by:Journal Papers

Date of Publication:2019-11-01

Journal:JOURNAL OF LASER APPLICATIONS

Included Journals:SCIE

Volume:31

Issue:4

ISSN No.:1042-346X

Key Words:laser bending; stainless steel-carbon steel laminated plate; bending angle; depth of plastic zone; analytical model

Abstract:Compared with the single-component metal plate, the stainless steel-carbon steel laminated plate (SCLP) combines the stainless steel layer and the carbon steel layer with a special preparation technique. In order to estimate the bending angle of laminated plates accurately, it is of great significance to establish an analytical model. Based on the temperature gradient mechanism, the temperature distribution equation of the SCLP is established by the piecewise function. Then, the depth of the plastic zone is calculated by the recrystallization temperature according to the temperature distribution along the thickness direction of the SCLP. Moreover, by fitting the yield strength curves of stainless steel and carbon steel, the average compressive stress of the plastic zone is calculated through the integral method. By optimizing the calculation of the plastic depth and the average compressive stress in the plastic zone, the analytical model is established based on mechanical equilibrium equations. The experimental verification shows that the average error of bending angle using the proposed model is 9.95%, while Liu's model is 38.02%. The proposed model provides a calculation method for estimating the bending angle, which contributes to improving the accuracy of the analytical model in laser bending of SCLP.

Next One:Morphology investigation of sectional stripes and adhering slag based on vapor-to-melt ratio in Nd:YAG laser cutting of Al2O3 ceramics