王晓放

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 现任中国工程热物理学会流体机械专委员会委员、中国航空学会学轻型燃气轮机分会委员、教育部重型燃气轮机教学资源库专家委员会委员、辽宁省能动类专业教指委副主任、大连市核事故应急指挥部专家组成员等职。

性别:女

毕业院校:大连理工大学

学位:硕士

所在单位:能源与动力学院

电子邮箱:dlwxf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Deposition behavior of thermally softened copper particles in cold spraying

点击次数:

论文类型:期刊论文

发表时间:2013-08-01

发表刊物:ACTA MATERIALIA

收录刊物:SCIE、EI

卷号:61

期号:14

页面范围:5105-5118

ISSN号:1359-6454

关键字:Cold spraying (CS); Deposition behavior; Particle preheating; Thermal softening; Numerical simulation

摘要:Finite-element analysis (FEA) combined with experimental observation was conducted on preheated Cu particles deposited on Cu substrate to clarify the deposition behavior of thermally softened particles in cold spraying. An explicit FEA code, ABAQUS, was used to predict the deformation features of the thermally softened particles. The experiment was performed by a home-made cold-spray system with a powder preheating device. Considering the possible serious oxidation of the cold-sprayed particles under high-temperature conditions, the preheating temperature was limited to 300 degrees C for each test. Based on the numerical and experimental results, a new concept called the thermal softening zone within which thermal softening occurs is proposed in the present work. It is found that thermally softened particles deform more intensively compared to non-preheated particles, and a more prominent metal jet can be achieved at the rim of the deformed particles with higher initial temperature. Moreover, the results also reveal that increasing the particle preheating temperature can stimulate the occurrence of thermal softening. For non-preheating or low-temperature preheating particles, thermal softening mainly occurs at the interfacial region. If the preheating temperature is sufficiently high, the whole particle can experience thermal softening. In addition, it is also found that preheated particles are more likely to deposit on the substrate surface than non-preheated particles. In addition, particle preheating is also found to facilitate the coating formation process, enabling the coating to be very thick. The coating microhardness decreases with increasing particle preheating temperature due to the elimination of work hardening by thermal softening. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.