王晓放

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 现任中国工程热物理学会流体机械专委员会委员、中国航空学会学轻型燃气轮机分会委员、教育部重型燃气轮机教学资源库专家委员会委员、辽宁省能动类专业教指委副主任、大连市核事故应急指挥部专家组成员等职。

性别:女

毕业院校:大连理工大学

学位:硕士

所在单位:能源与动力学院

电子邮箱:dlwxf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Computational analysis of the effect of nozzle cross-section shape on gas flow and particle acceleration in cold spraying

点击次数:

论文类型:期刊论文

发表时间:2011-01-25

发表刊物:SURFACE & COATINGS TECHNOLOGY

收录刊物:Scopus、SCIE、EI

卷号:205

期号:8-9

页面范围:2970-2977

ISSN号:0257-8972

关键字:Cold spraying; Numerical simulation; Powder release position; Nozzle shape; Particle acceleration

摘要:In cold spraying, the spraying of certain complicated surfaces may require nozzles with special cross-sections. In this study, numerical investigation is conducted to study the effect of nozzle cross-section shape on gas flow and particle acceleration in cold spraying. The comprehensive comparison between rectangular nozzles and elliptical nozzles indicates that rectangular nozzles result in slightly lower mean particle impact velocity than elliptical nozzles. However, for rectangular nozzles, more particles may achieve relatively high velocity due to the larger sectional area of their potential core. Furthermore, it can also be found from the numerical results that the mean particle impact velocity increases gradually with the decrease in Width/Length ratio (W/L) of the cross-section because of the diminishing bow shock size. However, when reducing the W/L to 0.2, the mean particle impact velocity begins to decrease steeply, which may be attributed to the rather small area of the potential core for the case of W/L = 0.2. Moreover, the systematic study on the powder release position shows that releasing particles from the nozzle inlet can ensure that particles achieve a high impact velocity and temperature. (C) 2010 Elsevier B.V. All rights reserved.