![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 现任中国工程热物理学会流体机械专委员会委员、中国航空学会学轻型燃气轮机分会委员、教育部重型燃气轮机教学资源库专家委员会委员、辽宁省能动类专业教指委副主任、大连市核事故应急指挥部专家组成员等职。
性别:女
毕业院校:大连理工大学
学位:硕士
所在单位:能源与动力学院
电子邮箱:dlwxf@dlut.edu.cn
Examination on the Calculation Method for Modeling the Multi-Particle Impact Process in Cold Spraying
点击次数:
论文类型:期刊论文
发表时间:2010-09-01
发表刊物:JOURNAL OF THERMAL SPRAY TECHNOLOGY
收录刊物:SCIE、EI
卷号:19
期号:5
页面范围:1032-1041
ISSN号:1059-9630
关键字:cold spraying (CS); copper particle; Eulerian method; multi-particle impact; numerical simulation; smoothed particle hydrodynamics (SPH) method
摘要:In this study, a systematic examination on multi-particle impact process in cold spraying was conducted for copper material by using different methods including Lagrangian method, Eulerian method, and smoothed particle hydrodynamics (SPH) method. It is found that for the Lagrangian method, the meshing size and the element type significantly affect the resultant output. Moreover, the particle deformation behavior calculated by Eulerian method is more comparable to the experimental observation than that by Lagrangian method. Further study on the multi-particle impact process also demonstrates that Eulerian method is superior to Lagrangian method. In addition, the preliminary investigation on the mesh-free-based SPH method shows that this technique can provide a relatively reasonable result in the particle deformation behavior and the weight of the independent SPH particle exerts limited effects on the resultant output. Furthermore, owing to the meshfree feature and the appropriate solution to the contact interface, SPH method can also be employed to simulate the multi-particle impact process in cold spraying.