大连理工大学  登录  English 
洪明
点赞:

教授   硕士生导师

任职 : 《船舶力学》、《中国舰船研究》、《船舶》、《兵器装备工程学报》等刊物编委

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 船舶工程学院

学科: 船舶与海洋结构物设计制造

办公地点: #2实验楼309室

联系方式: 84708453

电子邮箱: mhong@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 发表论文
Application of VPMCD method based on PLS for rolling bearing fault diagnosis

点击次数:

论文类型: 期刊论文

发表时间: 2017-02-01

发表刊物: JOURNAL OF VIBROENGINEERING

收录刊物: SCIE、EI、Scopus

卷号: 19

期号: 1

页面范围: 160-175

ISSN号: 1392-8716

关键字: fault diagnosis; partial least square; variable predictive model-based class discrimination; empirical mode decomposition; singular value decomposition

摘要: To address the non-stationary and nonlinear characteristics of vibration signals produced by rolling bearings and the noise pollution of acquired signals, a fault diagnosis method based on singular value decomposition (SVD), empirical mode decomposition (EMD) and variable predictive model-based class discrimination (VPMCD) is proposed in this paper. VPMCD is a novel pattern recognition method; however, according to the results obtained when the fault diagnosis method is applied to a small sample, the stability of the VPM constructed based on the least squares (LS) method is not sufficient, as demonstrated by the multiple correlations found between independent variables. This paper uses the partial least squares (PLS) method instead of the LS method to estimate the model parameters of VPMCD. Compared with the back-propagation neural network (BP-NN) and least squares support vector machine (LS-SVM) methods, based on numerical examples, the method presented in this paper can effectively identify a faulty rolling bearing.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学