大连理工大学  登录  English 
洪明
点赞:

教授   硕士生导师

任职 : 《船舶力学》、《中国舰船研究》、《船舶》、《兵器装备工程学报》等刊物编委

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 船舶工程学院

学科: 船舶与海洋结构物设计制造

办公地点: #2实验楼309室

联系方式: 84708453

电子邮箱: mhong@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 发表论文
An investigation of rolling bearing early diagnosis based on high-frequency characteristics and self-adaptive wavelet de-noising

点击次数:

论文类型: 期刊论文

发表时间: 2016-12-05

发表刊物: NEUROCOMPUTING

收录刊物: SCIE、EI、Scopus

卷号: 216

页面范围: 649-656

ISSN号: 0925-2312

关键字: Wavelet de-noising; Energy entropy; Grey relational analysis; Rolling bearing; Fault diagnosis

摘要: Rolling bearings are necessary parts in rotary machines. However, the problem of early fault diagnosis for rolling bearings is difficult to solve due to its low signal-to-noise ratio and non-linear and non-stationary signal. Based on a detailed investigation of rolling bearing vibration signals, this paper proposes a method for determining whether a fault occurs by comparing the high-frequency band power. If a fault occurs, we first de-noise the vibration signals using wavelet de-noising and then extract the fault characteristics in both the time domain and the time-frequency domain to avoid the limitations of using only one domain. Finally, the fault location is identified using the grey correlation method. According to the method application results, the recognition accuracy using the method proposed in this paper is satisfactory, proving that the method has superior performance. (C) 2016 Elsevier B.V. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学