Hits:
Indexed by:期刊论文
Date of Publication:2013-03-01
Journal:MATERIALS RESEARCH BULLETIN
Included Journals:SCIE、EI、Scopus
Volume:48
Issue:3
Page Number:1007-1012
ISSN No.:0025-5408
Key Words:magnetic materials; nanostructures; chemical synthesis; x-ray diffraction; magnetic properties
Abstract:The Fe3O4 nanoparticles were prepared by a novel wet-chemical method which shows its highly synthesizing efficiency and controllability. A possible formation mechanism was also proposed to explain the synthesizing process. X-ray diffraction (XRD) and transmission electron microscope (TEM) were employed and yielded an examination of an average diameter of 77 nm of the as-synthesized Fe3O4 nanoparticles with face-centered cubic structure. Vibrating sample magnetometer (VSM) and vector network analyzer were employed to measure the magnetic property and electromagnetic parameters of the nanoparticles, then reflection losses (RL (dB)) were calculated in the frequency range of 2-18 GHz. A large saturation magnetization (72.36 emu/g) and high coercivity (95 Oe) were determined and indicated that the Fe3O4 nanoparticles own strong magnetic performance. Following simulation results showed that the lowest reflection loss of the sample was -21.2 dB at 5.6 GHz with layer thickness of 6 mm. Effect of nanometer-sized further provided an explanation for the excellent microwave absorption behavior shown by the Fe3O4 nanoparticles. (C) 2012 Elsevier Ltd. All rights reserved.