周集体

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连工学院

学位:硕士

所在单位:环境学院

电子邮箱:zjiti@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis

点击次数:

论文类型:期刊论文

发表时间:2019-03-25

发表刊物:SCIENCE OF THE TOTAL ENVIRONMENT

收录刊物:SCIE、PubMed、Scopus

卷号:658

页面范围:95-104

ISSN号:0048-9697

关键字:Biochar; Shewanella; Cotransport; EET; Redox state; Taxis

摘要:Biochar widely applied to soil can influence microbial community composition and participate in extracellular electron transfer (EET). However, little is known about the cotransport behaviors of bacteria and biochar in aquifer and soil-water environments, which can affect the fate and application performance of biochar. In this study, we found that in comparison to their individual transport behaviors, the mobilities of cotransporting Shewanella oneidensis MR-1 and biochar colloid (BC) were significantly inhibited. The decreasing colloidal mobilities at higher ionic strengths signified the importance of electrostatic interaction between cell and BC in cotransport. Moreover, the less suppressed cotransport of BC and mutants defective of EET and the elevated inhibition effects on cotransport by adding exogenous electron donor suggested the importance of EET. Difference in cotransport behavior was also observed with BC having different redox states. Compared with oxidized BC, reduced BC with higher hydrophobicity led to easier aggregation with cell and higher retention in column. More importantly, MR-1 exhibited EET-dependent taxis towards biochar, which also contributed to the enhanced heteroaggregation and decreased mobilities of cell and biochar. Our results highlight that metabolic activities of microbes towards abiotic colloids cannot be neglected when assessing their transport behaviors, especially in subsurface environments abounded with redox-active inorganic particles and microbes performing extracellular respiration. (C) 2018 Elsevier B.V. All rights reserved.