![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连工学院
学位:硕士
所在单位:环境学院
电子邮箱:zjiti@dlut.edu.cn
Characterization of a Novel Phenol Hydroxylase in Indoles Biotranformation from a Strain Arthrobacter sp W1
点击次数:
论文类型:期刊论文
发表时间:2012-09-13
发表刊物:PLOS ONE
收录刊物:SCIE、PubMed、Scopus
卷号:7
期号:9
页面范围:e44313
ISSN号:1932-6203
摘要:Background: Indigoids, as popular dyes, can be produced by microbial strains or enzymes catalysis. However, the new valuable products with their transformation mechanisms, especially inter-conversion among the intermediates and products have not been clearly identified yet. Therefore, it is necessary to investigate novel microbial catalytic processes for indigoids production systematically.
Findings: A phenol hydroxylase gene cluster (4,606 bp) from Arthrobacter sp. W1 (PHw1) was obtained. This cluster contains six components in the order of KLMNOP, which exhibit relatively low sequence identities (37-72%) with known genes. It was suggested that indole and all the tested indole derivatives except for 3-methylindole were transformed to various substituted indigoid pigments, and the predominant color products derived from indoles were identified by spectrum analysis. One new purple product from indole, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one, should be proposed as the dimerization of isatin and 7-hydroxylindole at the C-2 and C-6 positions. Tunnel entrance and docking studies were used to predict the important amino acids for indoles biotransformation, which were further proved by site-directed mutagenesis.
Conclusions/Significance: We showed that the phenol hydroxylase from genus Arthrobacter could transform indoles to indigoids with new chemical compounds being produced. Our work should show high insights into understanding the mechanism of indigoids bio-production.