蒋景阳

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:有机化学

电子邮箱:jyjiang@dlut.edu.cn

扫描关注

论文成果

当前位置: 蒋景阳 >> 科学研究 >> 论文成果

Reversible hydrogen-bond-selective phase transfer directed towards noble metal nanoparticles and its catalytic application

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:RSC ADVANCES

收录刊物:SCIE、EI

卷号:6

期号:8

页面范围:6329-6335

ISSN号:2046-2069

摘要:Reversible phase transfer of noble metal nanoparticles (NMNPs) without the presence of phase transfer agents or supplementary reagents is a big challenge. Through a simple protocol, we demonstrated and expanded an easy, highly efficient, and continuously reversible hydrogen-bond-selective phase transfer directed towards thermoregulated ligand Ph2P(CH2CH2O)(22)CH3-stabilized noble metal (Pt, Ru, Ir, Pd, and Au) nanoparticles in the aqueous/alcohols biphasic system. When the thermoregulated ligand was integrated onto the NMNP surface, it provided a better switchable surface hydrophobicity/hydrophilicity for the NMNPs. So the critical parameters controlling the phase transfer of NMNPs, such as temperature, gas atmosphere and organic solvent, were studied. With the help of TEM, UV-vis, and ICP-AES, the as-prepared NMNPs (Pt, Ru, Ir, Pd, and Au) not only exhibited a high level of dispersion stability, but also had an almost constant size distribution (excluding Au-NPs) and very high phase transfer efficiency during the multiple reversible phase transfer processes. In addition, a simple mechanism with respect to the reason for the increase of Au nanoparticle size was discussed. Subsequently, the as-prepared Pt-NPs were used as the catalyst for the hydrogenation of diphenylacetylene (DPA). A complete semihydrogenation to stilbene and a better stereoselectivity to cis-stilbene were achieved. Additionally, the as-prepared Pt-NPs can be recycled for 13 times without evident loss in activity and selectivity. Therefore, our investigations supply a fundamental and systematic study of the reversible phase transfer of NMNPs (Pt, Ru, Ir, Pd, and Au), and then also afford an attractive solution to the problem of separating and recycling the NMNP catalysts.