Indexed by:期刊论文
Date of Publication:2018-09-01
Journal:JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
Included Journals:SCIE
Volume:32
Issue:9
Page Number:4057-4069
ISSN No.:1738-494X
Key Words:Bilinear springs; Chaos; Linear complementarity problem; Sub- and super-harmonic resonances; Vibration
Abstract:A computational scheme is presented in this paper to simulate dynamical behavior of multiple degrees of freedom (MDOF) systems with multiple bilinear springs. In the proposed scheme, a bilinear spring is modeled using by two parallel springs - a primary spring and a secondary spring. The primary spring is an ordinary linear spring having identical stiffness in tension and compression, and is active for tension and compression. The secondary spring, whose stiffness characterizes the bilinearity, is active only during compression. It is employed in connection with the Newmark integration method and the linear complementarity problem (LCP) formulation to obtain time-domain responses of dynamical systems with bilinear springs due to initial disturbances and harmonic excitations. The scheme described in this paper is effective in dealing with the sudden transition from tension to compression and vice versa simultaneously for all bilinear springs. Numerical results for bilinear oscillators with finite bilinearity ratios and impact oscillators with an infinite bilinearity ratio show that the proposed bilinear spring model is accurate, generic and valid for bilinearity ratios ranging from zero to infinity. Orderly and chaotic behavior of viscously damped 3-DOF system under harmonic excitation is studied for a wide range of excitation frequencies and bilinear ratios to demonstrate the effectiveness and applicability of the proposed model for MDOF bilinear systems.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title : 数字化设计研究所所长
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:机械工程学院
Business Address:机械楼9120
Open time:..
The Last Update Time:..